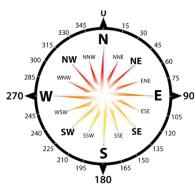

TOTAL AUTONOMY
(ISOLATED SITE)
POWER 32 kWh
FINANCING CASH

CLIENT NAME	JANGAL PARIS
PROJECT LOCATION	5 AVENUE DE L'OPÉRA, PARIS, FRANCE
SOLAR FILE	SIMULATION PARIS
SIMULATION	TOTAL AUTONOMY (ISOLATED SITE) V8641
CONTACT	-
E-MAIL	thomas.lefevre75@yopmail.com
PHONE	+33645238910

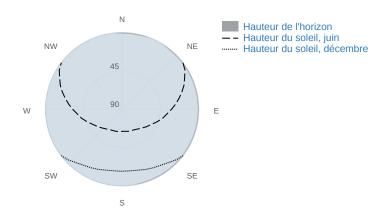
Geolocation

of the photovoltaic system

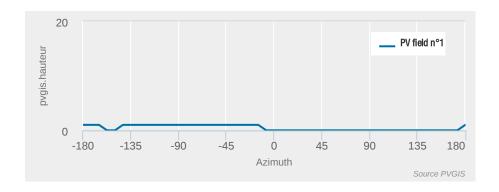


Installed PV : **16.0 KWp** Country : **France**

City: Paris


Address: Avenue de l'Opéra -5 Latitude : 48.864809962 Longitude: 2.3345111288

Horizon: Calculated (default PVGIS24)



PVGIS Information

Solar radiation and photovoltaic production will vary if there are local hills or mountains that block sunlight at certain times of the day. PVGIS can calculate their effect using ground elevation data with a resolution of 3 arc-seconds (about 90 meters). This calculation does not consider shadows from very nearby objects like houses or trees.

On this graph, we can read the height of the relief while around the photovoltaic installation, it is the distant mask, which can cause shading on installation.

These shadings are taken into account in the estimate of annual photovoltaic production.

- Database used: PVGIS-SARAH3
- Estimated additional loss of production due à l'angle d'incidence aux effets spectraux : 11.43%

Photovoltaic System Information

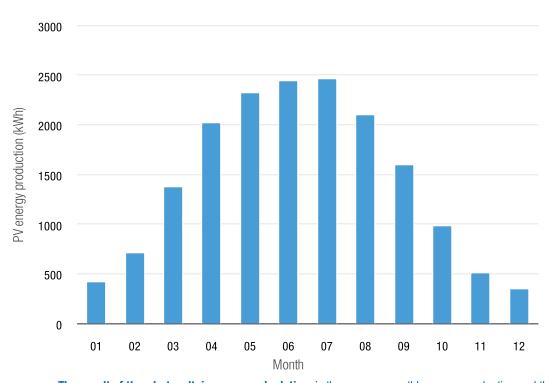
• Photovoltaic technology: Crystalline silicon

• Mounting system : **Overlay**

Installed PV:
Cable loss:
Inverter loss:
Annual PV loss:
Slope angle:
Azimuth angle:

The estimated system losses encompass all losses within the system, which means the actual energy supplied to the power grid is less than the energy produced by the photovoltaic modules. Several factors contribute to these losses, including cable losses, inverters, dirt (sometimes snow) on the modules, etc. Over the years, the modules also tend to lose some of their power, so the average annual production over the system's lifetime will be a few percentage points lower than the production of the initial years.

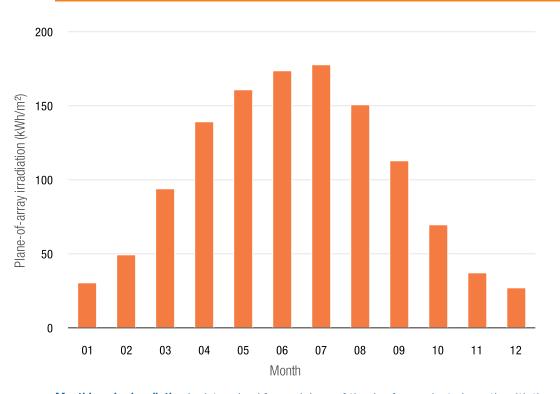
PVGIS 5.3 provides a default value of 14% for the total losses in the solar electricity generation system.


PVGIS24 Simulator proposes a loss value for the first year of operation. This loss will evolve year by year. This first-year loss value allows for a more detailed technical and financial analysis, year by year. Thus, over a 20-year operational period, the total production loss is close to 13% to 14%.

PVGIS Photovoltaic Production

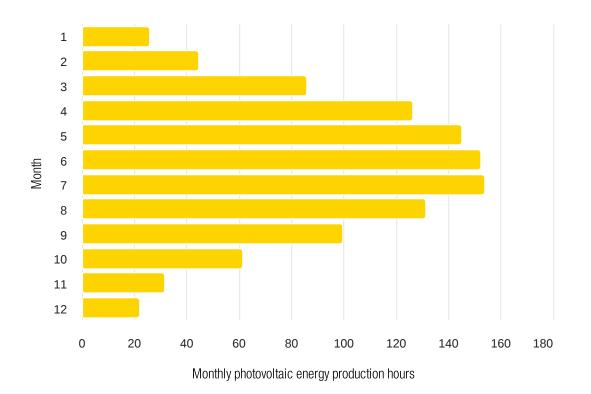
Annual photovoltaic energy production: 17,272.00 kWh

Variability from year to year: 4.21% (726.40kWh)


Month	kWh	%
01 - January	414,08	2.40%
02 - February	711,68	4.12%
03 - March	1 372,48	7.95%
04 - April	2 023,36	11.71%
05 - May	2 319,68	13.43%
06 - June	2 438,88	14.12%
07 - July	2 460,64	14.25%
08 - August	2102,72	12.17%
09 - September	1 594,88	9.23%
10 - October	978,72	5.67%
11 - November	504,96	2.92%
12 - December	349,60	2.02%

The result of the photovoltaic energy calculation: is the average monthly energy production and the average annual production of the photovoltaic installation with the chosen properties. The inter-annual variability is the standard deviation of the annual values calculated over the period covered by the selected solar radiation database.

Monthly irradiation on a fixed plane


Month	kWh/m²	%
01 - January	30,31	2.49%
02 - February	49,31	4.05%
03 - March	93,31	7.66%
04 - April	139,03	11.41%
05 - May	160,76	13.19%
06 - June	173,06	14.20%
07 - July	177,10	14.53%
08 - August	150,46	12.34%
09 - September	112,76	9.25%
10 - October	69,09	5.67%
11 - November	36,79	3.02%
12 - December	26,85	2.20%

Monthly solar irradiation Is determined for each hour of the day for a selected month, with the average being calculated over all days of that month during the multi-year period for which PVGIS has data. In addition to calculating the average solar radiation, the daily application of radiation also computes the daily variation of clear-sky radiation.

Monthly Production Hours photovoltaic energy

Annual photovoltaic energy production hours: 1,079.50 hours (average 3.0 hours per day)

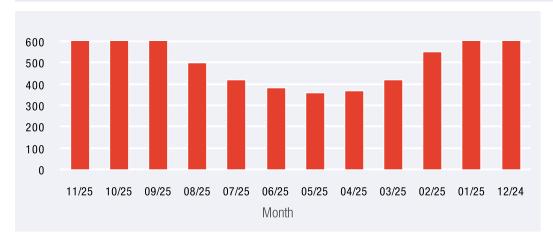
Month	Hours/Month	Hours/Day
01 - January	25.9	0.9
02 - February	44.5	1.6
03 - March	85.8	2.8
04 - April	126.5	4.3
05 - May	145.0	4.7
06 - June	152.5	5.1
07 - July	153.8	5.0
08 - August	131.5	4.3
09 - September	99.7	3.4
10 - October	61.2	2.0
11 - November	31.6	1.1
12 - December	21.9	0.7

The hours of monthly photovoltaic energy production represent the total time over a month that a solar installation produces of electricity, influenced by sunlight, system efficiency and operating conditions. It is a key indicator for evaluating performance and energy self-sufficiency.

Consumption Analysis

Year: 2025

Total period: 6,470 kWh / 1,618 €


Monthly average for the period: 540 kWh / 135 €

Average

Average day of the period: 18 kWh / 5 €

(\$) Purchase price: 0.25 €

Months	11	10	09	80	07	06	05	04	03	02	01	12
€	188	170	155	125	105	95	90	93	105	138	170	185
kWh / Months	750	680	620	500	420	380	360	370	420	550	680	740
kWh / Days	25	21	20	16	13	12	11	12	13	19	21	23
% Average	11.6 %	10.5 %	9.6 %	7.7 %	6.5 %	5.9 %	5.6 %	5.7 %	6.5 %	8.5 %	10.5 %	11.4 %

This analysis uses a method designed to evaluate energy consumption and its cost over a defined period, segmenting the data into monthly and daily averages.

- Basic data: The total annual energy consumption (kWh) is distributed by month to examine the variability of demand; the associated cost is determined based on a unit purchase rate.
- **Temporal breakdown :** Monthly and daily averages provide a detailed understanding of consumption fluctuations throughout the year; an average percentage reflects each month's relative contribution to the annual total.
- **Purpose :** This method helps identify periods of high or low consumption and plan strategies for energy optimization or cost management. Provide a clear and actionable overview of energy consumption to improve the sizing of solar installations or storage systems while keeping energy costs under control.

Self-consumption analysis

Theoretical calculation of the financial economy per year

ANNUAL kWh consumption	100%	6,470 kWh
Average Consumption KWh WEEK	60%	3,882 kWh
Average Consumption KWh WE	40%	2,588 kWh

Total Annual kWh Consumption Day (7 a.m. - 5 p.m.) 2,316 kWh / 36% annual day consumption

	Week	Weekend	
Number of kWh DAY (7 a.m5 p.m.)	33% 1,281 kWh	40% 1,035 kWh	
Number of kWh EVENING (5 p.m11 p.m.)	59% 2,290 kWh	54% 1,398 kWh	
Number of kWh NIGHT (11 p.m7 a.m.)	8% 311 kWh	6% 155 kWh	

Self-consumption potential per year 660 kWh (6,470 kWh x 10.20%)

Annual yield PVGIS	17,272 kWh	
Average productive hours per day	2.96 h	
% Average production hours per day	29.58% (2.96 h / 10 h)	
% Self-consumption potential per year	10.20% (29.58% x 36%)	

FINANCIAL ECONOMY SELF-CONSUMPTION PER YEAR

165 € (660 kWh x 0.25 €)

This analysis is based on a theoretical approach aimed at estimating the financial savings associated with solar energy self-consumption, relying on annual consumption and photovoltaic production data.

Energy consumption breakdown: The total consumption is segmented by time periods (weekdays, weekends, daytime, evening, nighttime) to assess the specific energy needs for each time slot. This approach helps identify daytime consumption, which reflects the potential for self-consumption.

Estimation of self-consumption potential: The solar production estimated by PVGIS is compared with daytime consumption. The coverage percentage indicates the portion of daytime consumption that can be directly supplied by solar energy.

Calculation of financial savings: Self-consumed kWh are valued based on the energy purchase tariff to calculate annual savings.

This analysis provides a quantitative basis for evaluating the financial benefits of self-consumption and optimizing the size of solar installations. This method also helps identify key periods to maximize the use of the energy produced.

Key figures

PHOTOVOLTAIC SYSTEM

Power: 16.0 kWp

Production year 1 : 17,272 kWh Annual drop in production : 0.5 %

Grid Resale Price : € 0.2

Revenue Resale year 1 : € 2,936

Annual Increase in Feed-in Tariff: 2.0 %

INVESTMENT

System Cost : € 36,000

Photovoltaic System Price : € 48,000

Subsidy : € 7,200 / 15 % Bonuses : € 4,800 / 10 %

Cost per Watt : € 2

CONSUMPTION

Consumption Year 1 : 6,470 kWh

Annual increase in consumption: 1.0%

Network Purchase Rate : € 0.3

Network Purchase Invoice year 1 : € 1,618
Annual increase in the Purchase Rate : 3.5%

FINANCING

Cash: € 48,000

1st payment : € 24,000 / 50 %

Performance Indices

Savings 37 years: **€ 112,389**

Cash flow differential:

Year € - / Months € - / Day € -

Self-consumption rate: 10%

Autonomy Rate : 90%

Internal rate of return (IRR): 14%

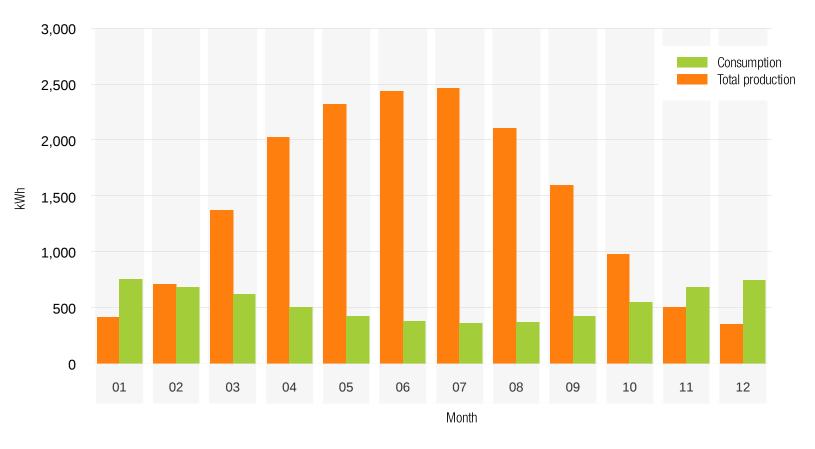
& Return on Investment - ROI: 7 years

The IRR (Internal Rate of Return) is the internal profitability rate of an investment for a series of negative and positive cash flows.

Grid Bill / Depreciation of purchasing power

	Grid Pricing	kWh	Grid invoices
	3.50 %	1 %	1 259 467 €
Y 1	0.25 €	6,470	1,617.50 €
Y2	0.26 €	6,535	1,690.85 €
Y 3	0.27 €	6,600	1,767.53 €
Y4	0.28 €	6,666	1,847.69 €
Y5	0.29 €	6,733	1,931.48 €
Y6	0.30 €	6,800	2,019.08 €
Y 7	0.31 €	6,868	2,110.64 €
Y8	0.32 €	6,937	2,206.36 €
Y 9	0.33 €	7,006	2,306.42 €
Y10	0.34 €	7,076	2,411.01 €
Y11	0.35 €	7,147	2,520.35 €
Y12	0.36 €	7,218	2,634.65 €
Y13	0.38 €	7,291	2,754.13 €
Y14	0.39 €	7,363	2,879.03 €
Y15	0.40 €	7,437	3,009.60 €
Y16	0.42 €	7,511	3,146.08 €
Y17	0.43 €	7,587	3,288.76 €
Y18	0.45 €	7,662	3,437.90 €
Y19	0.46 €	7,739	3,593.81 €
Y20	0.48 €	7,816	3,756.79 €
Y21	0.50 €	7,895	3,927.16 €
Y22	0.51 €	7,974	4,105.26 €

Deterioration of purchasing power				
Year	Inflation	Depreciation		
Y1	36,000 €			
Y2	32,400 €	10%		
Y 3	29,160 €	19%		
Y4	26,244 €	27%		
Y 5	23,620 €	34%		
Y6	21,258 €	41%		
Y 7	19,132 €	47%		
Y8	17,219 €	52%		
Y 9	15,497 €	57%		
Y10	13,947 €	61%		
Y11	12,552 €	65%		
Y12	11,297 €	69%		
Y13	10,167 €	72%		
Y14	9,151 €	75%		
Y15	8,236 €	77%		
Y16	7,412 €	79%		
Y17	6,671 €	81%		
Y18	6,004 €	83%		
Y19	5,403 €	85%		
Y20	4,863 €	86%		
Y21	4,377 €	88%		
Y22	3,939 €	89%		


Grid Bill / Depreciation of purchasing power

	Grid Pricing	kWh	Grid invoices
	3.50 %	1 %	1 259 467 €
Y23	0.53 €	8,053	4,291.43 €
Y24	0.55 €	8,134	4,486.05 €
Y25	0.57 €	8,215	4,689.49 €
Y26	0.59 €	8,297	4,902.16 €
Y27	0.61 €	8,380	5,124.47 €
Y28	0.63 €	8,464	5,356.87 €
Y29	0.66 €	8,549	5,599.80 €
Y30	0.68 €	8,634	5,853.75 €
Y31	0.70 €	8,721	6,119.22 €
Y32	0.73 €	8,808	6,396.73 €
Y33	0.75 €	8,896	6,686.82 €
Y34	0.78 €	8,985	6,990.06 €
Y35	0.81 €	9,075	7,307.06 €
Y36	0.83 €	9,165	7,638.44 €
Y37	0.86 €	9,257	7,984.84 €

Deterioration of purchasing power							
Year	Inflation	Depreciation					
Y23	3,545 €	90%					
Y24	3,191 €	91%					
Y25	2,872 €	92%					
Y26	2,584 €	93%					
Y27	2,326 €	94%					
Y28	2,093 €	94%					
Y29	1,884 €	95%					
Y30	1,696 €	95%					
Y31	1,526 €	96%					
Y32	1,373 €	96%					
Y33	1,236 €	97%					
Y34	1,113€	97%					
Y35	1,001 €	97%					
Y36	901 €	97%					
Y37	811 €	98%					

Production and Consumption

A histogram comparing solar production and energy consumption offers several advantages for analysis and decision-making, especially in the context of energy optimization.

Production Site

Total period months: 6470 kWh

Total Self-Consumption: **540 kwh**

Total Autonomy: **5810 kWh**

Months	01	02	03	04	05	06	07	08	09	10	11	12
kWh / Month	750	680	620	500	420	380	360	370	420	550	680	740
kWh / Day	188	170	155	125	105	95	90	93	105	138	170	185
kWh Self-consumption	54	56	54	56	56	54	56	54	56	51	56	56
kWh Autonomy	23.2	20.1	18.9	14.3	11.7	10.9	9.8	10.5	11.7	17.8	20.1	22.1

This analysis illustrates the hypothesis of energy autonomy for a production site, based on total consumption, self-consumption, and the autonomy provided by the system.

Energy Consumption Estimation: The monthly and daily consumption is calculated to understand the energy needs of the site over a given period. **Self-Consumption Calculation:** Locally produced and directly consumed energy (self-consumption) is estimated to assess the share of production used without relying on the grid.

Energy Autonomy: The potential for autonomy (produced and consumed energy on-site) is calculated in kWh for each month, reflecting the system's ability to reduce grid dependency.

This approach helps measure the level of energy autonomy achieved by the photovoltaic system while identifying the months where self-consumption and autonomy are optimized, thereby enabling decisions to improve overall performance.

Battery Hypothesis

Total kWh/year Batteries 40 kWh : 14600 kWh

Total kWh/year Batteries 32 kWh : 11680 kWh

Total kWh/year Batteries 25 kWh : 9125 kWh

Months	11	10	09	08	07	06	05	04	03	02	01	12
kWh Autonomy	23.2	20.1	18.9	14.3	11.7	10.9	9.8	10.5	11.7	17.8	20.1	22.1
Batteries 40 kWh	100 %	100 %	100 %	100 %	100 %	100 %	100 %	100 %	100 %	100 %	100 %	100 %
Batteries 32 kWh	100 %	100 %	100 %	100 %	100 %	100 %	100 %	100 %	100 %	100 %	100 %	100 %
Batteries 25 kWh	100 %	100 %	100 %	100 %	100 %	100 %	100 %	100 %	100 %	100 %	100 %	100 %

This analysis relies on a method for evaluating the performance of batteries with various capacities to estimate their annual energy contribution and suitability to the needs.

Capacity and monthly availability: Battery capacities are compared with the required autonomy each month to assess their energy coverage.

Total annual consumption: The energy provided by each battery over a one-year period is calculated to measure its overall performance.

Optimal usage: Monthly percentages reveal periods when batteries exceed or reach their limits, allowing the determination of whether they are undersized or oversized.

This method aims to properly size batteries to maximize efficiency while avoiding energy waste or insufficient autonomy.

Battery Consumption

Average Yearly Battery Consumption

Batteries 40 kWh: 40 %

Batteries 32 kWh: **50** %

Batteries 25 kWh : **64** %

Months	11	10	09	08	07	06	05	04	03	02	01	12
kWh Autonomy	23.2	20.1	18.9	14.3	11.7	10.9	9.8	10.5	11.7	17.8	20.1	22.1
Batteries 40 kWh	58 %	50 %	47 %	36 %	29 %	27 %	25 %	26 %	29 %	45 %	50 %	55 %
Batteries 32 kWh	72 %	63 %	59 %	45 %	37 %	34 %	31 %	33 %	37 %	56 %	63 %	69 %
Batteries 25 kWh	93 %	81 %	75 %	57 %	47 %	43 %	39 %	42 %	47 %	71 %	81 %	88 %

The analysis of battery consumption based on their capacity and monthly energy needs relies on:

- Energy coverage calculation: We evaluate how each battery size meets the monthly needs.
- Annual average: Allows comparing the effectiveness of different capacities over a full year.
- Monthly usage: Identifies periods when the battery reaches its maximum capacity or remains underutilized. This approach helps size the batteries according to real needs, balancing autonomy and resource optimization.

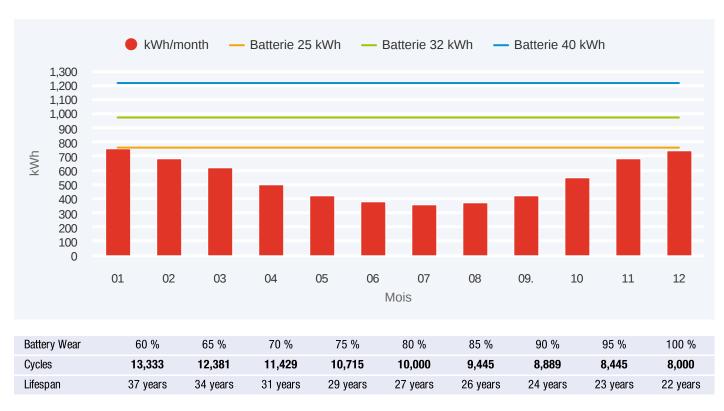
Grid Cost

Yearly Grid Cost Savings

(ioi) Batteries 40 kWh: 40 % 1618 € 100%

Batteries 32 kWh: 50 % 1618 € 100%

Batteries 25 kWh: 64 % 1618 € 100%


Months	11	10	09	80	07	06	05	04	03	02	01	12
kWh Autonomy	23.2	20.1	18.9	14.3	11.7	10.9	9.8	10.5	11.7	17.8	20.1	22.1
Batteries 40 kWh	0	0	0	0	0	0	0	0	0	0	0	0
Batteries 32 kWh	0	0	0	0	0	0	0	0	0	0	0	0
Batteries 25 kWh	0	0	0	0	0	0	0	0	0	0	0	0

This table compares the impact of different battery capacities on energy autonomy, grid costs, and annual savings. Batteries with higher capacity provide better savings and further reduce grid dependency but require a higher initial investment.

Autonomy Hypothesis

Year: 2025 **Consumption Curve (kWh) / Total Battery Autonomy**

	Batteries 25 kWh	Batteries 32 kWh	Batteries 40 kWh
Battery Wear	64%	50%	40%
Battery longevity	37 ans	37 ans	37 ans
Annual Savings	100%	100%	100%
Annual Residual Network	€-	€-	€-
Monthly Residual	€-	€-	€-

Comparison of Financing: Cash / Loan / Leasing

Batteries 32 kWh

System Price	48,000 €
Battery price	48,000 €
SUBSIDY AND BONUS	7,200 €
NET COST	36,000 €

- 4	_			
п				ю
		~	-	

Cash Deposit	48,000 €

Cash financing

Loan (BANK 1)

Cash Deposit	5,800 €

5-Year Loan Financing / 0.17%

TRI 7%	PR0FIT 124,389 €
--------	------------------

The difference between the cost of the loan and the resale proceeds is:

6,678€/y	ears
----------	------

557€/month

18€/day

Loan 2 (BANK 2)

Cash Deposit	11,600 €	408 €/day

10-Year Loan Financing / 0.17%

TRI -%	PROFIT - €
--------	------------

The difference between the cost of the loan and the resale proceeds is:

1,957€/years

163€/month

5€/day

Treasury	36,000 €
1st Payment 50 %	24,000 €
4 checks of 10 %	4.800 €

Treasury	(6,200) €
Monthly loan cost	801 €
Annual Ioan cost	9,615 €

Treasury	(400) €
Monthly loan cost	408 €
Annual Ioan cost	4,893 €

Simplified Financial Comparison

Batteries 25 kWh	
I am partially autonomou	IS
Batteries	25 kWh
Solar Panels	500 kW
SAE Roof Operating Area	60 m2
Determination of SAE financial cost	
Price	37,500 €
Subsidy 25%	9,375 €
TOTAL COST	28,125 €
COST per Watt Hour	1€
Cash Financing	
1st Payment 50 %	18,750 €
4 checks of 10 %	3,750 €
DEPOSIT	37,500 €
SUBSIDY	9,375 €
TREASURY	28,125 €
Battery consumption kWh per year	9,125 kWh
Grid Pricing	0€
Guaranteed savings per year	2,281 €
RESIDUAL TO BE FINANCED / YEAR	- €
FLAT RESIDUAL TO BE FINANCED / MONTH	- €
FLAT RESIDUAL TO BE FINANCED / DAY	- €
- €/years - €/month	- €/day

Ва	atteries 32 kWl	1
l am	partially autonom	ous
Batteries		32 kWh
Solar Panels		500 kW
SAE Roof Operation	ng Area	77 m2
Determination of	of SAE financial co	st
Price		48,000 €
Subsidy 25%		12,000 €
TOTAL COST		36,000 €
COST per Watt H	our	1€
Cash Financing		
1st Payment 50 %	1	24,000 €
4 checks of 10 %		4,800 €
DEPOSIT		48,000 €
SUBSIDY		12,000 €
TREASURY		36,000 €
Battery consumpt	ion kWh per year	11,680 kWh
Grid Pricing		0€
Guaranteed savin	gs per year	2,920 €
RESIDUAL TO BE	FINANCED / YEAR	- €
FLAT RESIDUAL T MONTH	O BE FINANCED /	- €
FLAT RESIDUAL T Day	O BE FINANCED /	- €
- €/years	- €/month	- €/day

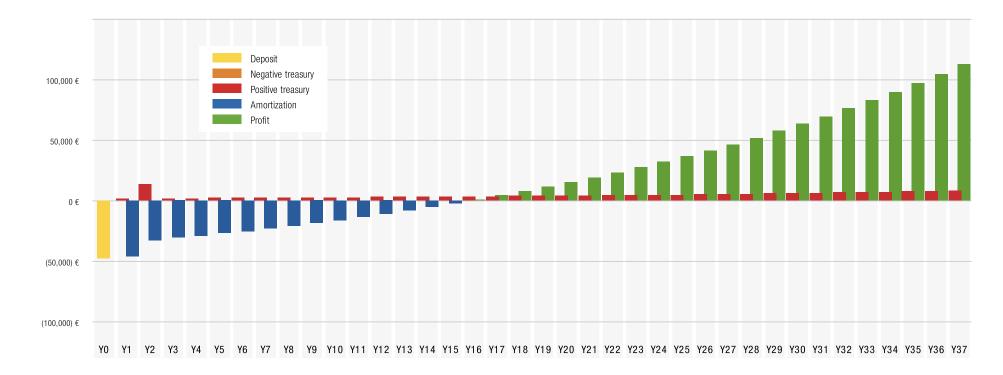
Batteries 40 kWh	
I am partially autonomou	IS
Batteries	40 kWh
Solar Panels	500 kW
SAE Roof Operating Area	96 m2
Determination of SAE financial cost	
Price	60,000 €
Subsidy 25%	15,000 €
TOTAL COST	45,000 €
COST per Watt Hour	1€
Loan 2 Financing	
Loan 2 80%	48,000 €
Cost of the loan 10/years	64,528 €
Per year / 10 years	6,453 €
DEPOSIT	12,000 €
SUBSIDY	15,000 €
TREASURY	(3,000) €
Battery consumption kWh per year	14,600 kWh
Grid Pricing	0€
Guaranteed savings per year	3,650 €
RESIDUAL TO BE FINANCED / YEAR	2,803 €
FLAT RESIDUAL TO BE FINANCED / MONTH	234 €
FLAT RESIDUAL TO BE FINANCED / Day	8€
2,803 €/years 234 €/month	8 €/day

Comparison of Financing: Cash / Loan / Leasing

What to remember

Batteries 25 kWh

-€/day	
Net Cost Total Maintenance Included	28,125 €
Annual loan cost	- €
Guaranteed Annual Savings	2,281 €
Difference between the Loan and the Savings	- €
Per Day	0 €/day


Batteries 32 kWh	
-€/day	
Net Cost Total Maintenance Included	36,000 €
Annual Ioan cost	- €
Guaranteed Annual Savings	2,920 €
Difference between the Loan and the Savings	- €
Per Day	0 €/day

Batteries 40 kWh	
8€/day	
Net Cost Total Maintenance Included	45,000 €
Annual loan cost	6,453 €
Guaranteed Annual Savings	3,650 €
Difference between the Loan and the Savings	2,803 €
Per Day	8 €/day

Cash Flow Chart & Return on Investment - ROI

Batteries 32 kWh

This histogram, representing cash flows and the return on investment (ROI), allows to:

- Visualize financial movements over a specified period, distinguishing between positive bars (income) and negative bars (expenses).
- Identify the point where ROI becomes positive, indicating the recovery of the initial investment.
- Track the evolution of net gains to evaluate the long-term profitability of the project. It is a clear tool for understanding financial performance and a decision-making aid for investors.

Carbon Footprint

France

https://www.iea.org/countries/france

IEA Electricity Production Sector Production in GWh

Energy Sources.	GWh	%			
Coal	2,038.0	0.4%			
Fuel	7,004.0	1.2%			
Gas	17,711.0	3.1%			
Biomass	7,775.0	1.4%			
Waste	4,452.0	0.8%			
Solar Thermal	-	-%			
Géothermie	128.0	0.0%			
Solar PV	23,623.0	4.2%			
Wind	47,245.0	8.3%			
Nuclear	380,451.0	66.9%			
Hydroelectricity	77,461.0	13.6%			
Other sources	1,159.0	0.2%			
569,047.0 GWh					

CO² Content per kWh in Production in grams of CO² per kWh produced and consumed

Energy Sources.	CO ² Coefficient	CO ² emission		
Coal	1,060.0	3.8		
Fuel	730.0	9.0		
Gas	418.0	13.0		
Biomass	230.0	3.2		
Waste	-	-		
Solar Thermal	-	-		
Géothermie	-	-		
Solar PV	20.0	0.8		
Wind	12.0	1.0		
Nuclear	-	-		
Hydroelectricity	24.0	3.3		
Other sources	-	-		
- g de CO² par kWh				

The calculation of a country's carbon footprint allows for:

- Evaluating the total greenhouse gas (GHG) emissions generated by its activities, including industry, transportation, agriculture, and energy consumption.
- Identifying the main sources of emissions to prioritize reduction efforts.
- Taking into account factors such as the carbon footprint of imports and exports to gain a comprehensive overview.
- It is an essential tool for monitoring progress toward climate goals and guiding public policies toward a sustainable transition.

Ratteries	25 kWh	Batteries	32 kWh	Ratteries	40 kWh
Dattorios	ZU KVVI	Dallono	OZ KVVII	Dattonios	TO KVVII

Carbon Footprint GES 20 years	$(2.56) \text{ T CO}^2$	$(3.28) \text{ T CO}^2$	(4.10) T CO ²
Annual Production of Photovoltaic System	9,125.00 kWh	11,680.00 kWh	14,600.00 kWh
Gramme CO ² annuel supprimés	310,598.58 Gr CO ²	397,566.18 Gr CO ²	496,957.72 Gr CO ²
Annual CO ² emission avoided	0.31 T CO ²	0.40 T CO ²	0.50 T CO ²
Annual CO ² emission of Photovoltaic system	182,500.00 Gr CO ²	233,600.00 Gr CO ²	292,000.00 Gr CO ²
Annual CO ² emission of Photovoltaic system	0.18 T CO ²	0.23 T CO ²	0.29 T CO ²
Annual Carbon Balance	0.13 T CO ²	0.16 T CO ²	0.20 T CO ²

The calculation of the carbon balance of a solar installation allows to :

- Evaluate the emissions avoided through the production of renewable energy, compared to conventional supply via the grid (often based on fossil fuels).
- Quantify the positive environmental impact, particularly in terms of tons of CO₂ saved throughout the system's lifespan.
- Highlight that each kWh of self-consumed solar energy directly contributes to reducing the household's carbon footprint.
- It is a tangible demonstration of the future solar energy producer's commitment to a more sustainable lifestyle.